Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514250

RESUMO

Taxus is a rare and endangered woody plant worldwide with important economic and ecological values. However, the weak environmental adaptability of Taxus species, in particular the unstable photosynthetic activity in different seasons, always affects its normal growth and development and limits its conservation and exploitation. To improve the survival of Taxus trees in cultivated areas, the seasonal dynamics of chlorophyll fluorescence (CF) and key physiological parameters were comprehensively investigated in T. media and T. mairei. The results demonstrated that the photosynthetic activity of both Taxus species was sensitive to local summer and winter environmental conditions, with the heterogeneity of fluorescence signatures intuitively presented on the needle surface by CF-Imaging detection, while images of maximum quantum efficiency of PSII photochemistry (Fv/Fm) demonstrated values below 0.7 in the blue-green sectors in winter. The distribution of light energy was regulated by the photosynthetic apparatus in both Taxus species to maintain a stable actual quantum yield of PSII photochemistry (φPSII), which was around 0.4-0.5. Based on a redundancy discriminant analysis, the interpretation rate of light intensity and air temperature ranked as the top two in both Taxus species, which were considered the main environmental factors affecting the photosynthetic performance of Taxus by disturbing the electron transport chain. In the winter, T. mairei exhibited weaker electron transport activity than T. media, thus caused lower photochemistry and more severe photosynthetic damages. Interestingly, both Taxus species demonstrated consistent response patterns, including diverse energy dissipation strategies and enhancement of osmoregulatory substances and antioxidative activities, thus maintaining stable photosynthetic functions in response to environmental changes.

2.
Sci Rep ; 8(1): 16416, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401919

RESUMO

Leaf scorch exists as a common phenomenon in the development of plant, especially when plants encounter various adversities, which leads to great losses in agricultural production. Both Jinhong poplar (JHP) and Caihong poplar (CHP) (Populus deltoids) are obtained from a bud sport on Zhonghong poplar. Compared with CHP, JHP always exhibits leaf scorch, poor growth, premature leaf discoloration, and even death. In this study, the candidate genes associated with leaf scorch between JHP and CHP were identified by the whole genome resequencing using Illumina HiSeqTM. There were 218,880 polymorphic SNPs and 46,933 indels between JHP and CHP, respectively. Among these, the candidate genes carrying non-synonymous SNPs in coding regions were classified into 6 groups. The expression pattern of these candidate genes was also explored in JHP and CHP among different sampling stages. Combined with the qRT-PCR analysis, the results showed that genes associated with transport of various nutritional elements, senescence and MYB transcription factor might play important roles during the process of leaf scorch in Populus deltoids. Four genes belonging to these three groups carried more than three SNPs in their coding sequence, which might play important roles in leaf scorch. The above results provided candidate genes involved in leaf scorch in Populus deltoids, and made us better understand the molecular regulation mechanism of leaf scorch in Populus deltoids.


Assuntos
Folhas de Planta/anatomia & histologia , Populus/anatomia & histologia , Populus/genética , Sequenciamento Completo do Genoma , Ontologia Genética , Mutação INDEL , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...